

October 13, 2017

Pfizer Inc. 100 Route 206 North, MS LLA-401 Peapack, NJ 07977 Tel: 908-901-8630

Via e-mail and U.S. Postal Service

David N. Cuevas-Miranda, Ph.D. Geologist/Marine Scientist Senior RCRA Corrective Action Project Manager US EPA-Region 2 Caribbean Environmental Protection Division City View Plaza II, Suite 7000 Guaynabo, Puerto Rico 00968

RE: Pfizer Pharmaceuticals, LLC, Carolina Puerto Rico Site - 65th Infantry Avenue, Km. 9.7 Risk-Based Closure Criteria for Remedial Activities

Dear Mr. Cuevas:

On behalf of Pfizer Pharmaceuticals, LLC (PPLLC), please find attached a Technical Memorandum prepared by Golder Associates Inc. that presents risk-based closure criteria (RBCC) for the former Wyeth Carolina, Puerto Rico facility. The RBCC are based on the intended site use (i.e. industrial/commercial) and groundwater use restrictions that would accompany site restrictive covenants/deed restrictions.

It would be good to discuss the attached Technical Memorandum, when convenient for you; however, I understand that it may be a while following the major devastation from the hurricane - as our thoughts and prayers are with you.

Sincerely,

William G. Gierke, P.G., Senior Manager

Pfizer Inc.

TECHNICAL MEMORANDUM

Date: October 13, 2017 **Project No.:** 103-82746B

To: William Gierke – Pfizer Inc.

From: Gregory Garvey

cc: Jeff Paul, Kirk Blevins

RE: DEVELOPMENT OF SITE-SPECIFIC RISK-BASED CLOSURE CRITERIA – FORMER WYETH

FACILITY IN CAROLINA, PUERTO RICO

Golder Associates Inc. (Golder) has prepared this Technical Memorandum, on behalf of Pfizer Inc. (Pfizer), to summarize the risk-based closure criteria (RBCC) for the former Wyeth facility in Carolina, Puerto Rico (site). The criteria presented in this memorandum are based on potential on-site exposures to constituents of concern under current conditions via the potential vapor intrusion pathway. This memorandum summarizes the approach for calculating the criteria and presents the criteria for risk-based closure for the site.

1.0 INTRODUCTION

Analytical results from assessment activities conducted from September 2010 through December 2013, reported that chlorinated volatile organic compounds (CVOCs) were detected in soil and groundwater at the site. A Remedial Action Plan (RAP) was submitted to the United States Environmental Protection Agency (USEPA) in July 2014. Phased implementation of the RAP commenced in July 2014 with full-scale implementation beginning in the fall of 2015. The selected remedial option included injection of amendment to accelerate biodegradation of the CVOCs with subsequent groundwater monitoring.

Prior to implementing any remedial activities, Golder completed a screening level human health risk assessment (HHRA) in 2012. Site conditions have since changed, as constituent concentrations in soil and groundwater are significantly reduced and multiple buildings have been demolished. Therefore, the conclusions of the HHRA may no longer be applicable to the site. As such, Pfizer has requested that Golder evaluate current conditions at the site to establish RBCC that would be protective of human health.

Golder used a multi-step approach to establish the RBCC for the site. This process included evaluating current analytical data, selecting constituents of potential concern (COPCs), and analysis with predictive modeling. The following details the specifics of this process and establishes RBCC for the site.

2.0 DATA EVALUATION

Golder reviewed the groundwater analytical results from 29 shallow monitoring wells and 36 injection wells at the site. The shallow monitoring wells and injection wells are listed in Attachment A-1 and presented on Figure 1.

For soil, Golder reviewed the soil analytical results from 32 soil borings. The soil borings are listed in Attachment A-2 and locations provided in Figure 2. This review was to determine the usability of the data in selecting COPCs and evaluating/quantifying risk.

2.1 Data Summary

The constituents included in this evaluation were selected based on identified soil and groundwater impacts at the site. For groundwater, the following constituents were identified: ethane, ethene, methane, 1,1-dichloroethene, cis-1,2-dichloroethene, total 1,2-dichloroethene, tetrachloroethene (PCE), trichloroethene (TCE), and vinyl chloride. For soil, the following constituents were identified: chloroform, PCE, TCE, cis-1,2-dichloroethene, trans-1,2-dichloroethene, and vinyl chloride. For each constituent, the relevant statistical information (frequency of detection, range of reported concentrations, and range of detection limits) was compiled for review and is presented in Tables 1 and 2 for groundwater and soil, respectively. Specific assumptions used in the data analysis are as follows:

- For groundwater, only analytical results of samples collected from shallow monitoring wells were included.
- Only data deemed usable based on the data validation process were included.

2.2 Selection of Constituents of Potential Concern For Human Health Risk Assessment

2.2.1 Groundwater

The USEPA vapor intrusion screening levels (VISLs) (USEPA 2016) for commercial/industrial workers were used as the primary source for human health risk-based screening levels, based on a target cancer risk of 1×10^{-6} , a target hazard quotient (HQ) of 0.1, and a default groundwater to indoor air attenuation factor of 0.001. Constituents whose maximum concentration in groundwater was reported above either of their carcinogenic or non-carcinogenic VISL were considered a COPC for which a constituent-specific RBCC would be derived.

For groundwater in the vicinity of two monitoring wells on the western portion of the property, MW-04S and MW-05S, in accordance with USEPA's OSWER Technical Guidance for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Sources to Indoor Air. the VISLs are not applicable, as the groundwater at these locations is less than 5 feet below ground surface (ft bgs) (USEPA 2015). Additionally, groundwater sampling from these monitoring wells has reported very low CVOC concentrations and the groundwater in this area is not currently beneath any occupied structures (i.e., it is beneath the facility parking lot).

The results of this comparison identified three constituents (PCE, TCE, and vinyl chloride) as COPCs in groundwater (Table 1). One constituent, 1,1-dichloroethene, was not identified as a COPC based on a maximum detection concentration below its VISL. For the remaining constituents (cis-1,2-dichloroethene, total 1,2-dichloroethene, ethane, ethene, and methane) numerical VISLs were not available due to a lack of inhalation toxicity factors. Therefore, they were not retained as COPCs and were evaluated qualitatively in the uncertainty analysis (Section 6.0).

2.2.2 Soil

Recent USEPA guidance documents on evaluating the vapor intrusion pathway (USEPA 2014; 2015) do not include an approach for evaluating soil concentrations of VOCs, particularly deeper soils. VISLs for soil are not recommended based on the high degree of uncertainty with the partitioning of VOCs from soil to soil vapor (USEPA 2015). Although soil vapor sampling may be recommended when soil concentrations are high, the area of soil impacts are located within the vicinity of high groundwater impacts and soil vapor impacts from soil would not be distinguishable from groundwater. In addition, the CVOCs detected in soils at the site are at a significant depth (>20 ft bgs), which would limit any potential vapor intrusion risks. The impacted soils are also within the depth and location of the current injection areas and are likely to decrease as remedial activities continue at the site.

For the purposes of developing RBCC, any CVOCs in soils will be addressed qualitatively and as part of the uncertainty analysis (Section 6.0).

3.0 CALCULATION OF RISK-BASED CLOSURE CRITERIA

Golder modified the Johnson & Ettinger (J&E) model for vapor intrusion (USEPA 2004) to reflect site-specific conditions (i.e., depth to groundwater) and revised default values for groundwater temperature and soil properties.

The 30 shallow monitoring wells were separated based on geographic distribution (see Figure 1) in order to evaluate potential RBCCs based on specific areas of the site, rather than on a single well location. This allowed for a more specific evaluation of potential future building conditions. The depth to groundwater for each well grouping (Attachments B-1 and B-2) was calculated by averaging the average depth to groundwater for each well within a group. The well location or area groupings are as follows:

- Group 1 MW-04S, MW-05S, MW-06S, and MW-09S;
- Group 2 MW-07S, MW-15S, MW-21S, MW-22S, and MW-31S;
- Group 3 MW-02S, MW-11S, MW-16S, MW-23S, MW-24S, and MW-28S;
- Group 4 MW-13S, MW-17S, MW-18S, MW-19S, and MW-20S;
- Group 5 MW-08S, MW-10S, and MW-14S;
- Group 6 MW-03S and MW-12S;
- Group 7 MW-01S; and
- Group 8 MW-25S (now INJ-36), MW-26S, MW-27S, and MW-29S

The lithology from the ground surface through the shallow saturated zone is primarily comprised of saprolite material. Saprolite is not listed as a soil type in the J&E model. Of the soil types listed in the J&E model, the characteristics of sandy clay best corresponded with the saprolite characteristics observed at the site and its default values were used in the model. The average default groundwater temperature for south Florida of 25 degrees Celsius (C) (USEPA, 2004) was used in the model, which is similar/close to what was observed at the site (27 degrees C). Chemical-specific factors utilized within the J&E model for the selected COPCs were updated to be consistent with the values present in the most recent USEPA regional screening level (RSL) tables (USEPA 2017). The J&E model worksheets for groundwater to indoor air attenuation are presented in Attachment C. The groundwater to indoor air attenuation factors for the COPCs, calculated by the J&E model, are summarized in Table 3.

4.0 CALCULATION AND SELECTION OF RISK-BASED CLOSURE CRITERIA

The RBCC were calculated on a constituent and monitoring well location grouping-specific basis using site-specific groundwater attenuation factors, adjusted industrial worker RSLs for ambient air (USEPA 2017), and constituent-specific Henry's law constants (USEPA 2017). In order to account for cumulative risk in the calculation of RBCC, the constituent-specific industrial worker RSLs for ambient air were adjusted to reflect a target cancer risk of 2.0×10^{-5} and target hazard quotient of 1.0, which is appropriate as PCE, TCE, and vinyl chloride have differing target organs (see Table 3). The target risk level of 2.0×10^{-5} and target hazard quotient of 1.0 were selected based on best professional judgment in order to demonstrate that if the concentrations of COPCs are at or below the proposed RBCCs, then the resulting risk would be within the acceptable USEPA target carcinogenic risk range of 1.0×10^{-6} to 1.0×10^{-4} and target organ-specific hazard quotient of 1.0.

The lower of the carcinogenic and non-carcinogenic, adjusted ambient air RSLs, was selected as the target indoor air concentration. Groundwater protective concentrations, defined as the maximum groundwater concentration that would be protective of indoor air, were then calculated using the methodology described in the USEPA vapor intrusion screening level (VISL) users guide (USEPA 2014) using the following equation:

$$C_{gw} = \frac{C_{target,ia}}{HLC \times AF_{gw} \times \frac{1000 L}{m^3}}$$

Where:

- C_{gw} = maximum target groundwater concentration (microgram per liter; $\mu g/l$)
- C_{target,ia} = target indoor air concentration (microgram per cubic meter; μg/m³)
- AF_{qw} = attenuation factor (unit less)
- HLC = dimensionless Henry's Law constant (unit less)

Golder calculated the RBCC for each COPC, within each of the eight monitoring well location groups, results of which are in Table 3. From the eight groups, the lowest, i.e., most conservative, value derived for each COPC was selected as the final site-wide RBCC. The site-wide RBCC values for each COPC are as follows:

COPC	Calculated RBC (µg/L)
Tetrachloroethene (PCE)	23,585
Trichloroethene (TCE)	2,482
Vinyl Chloride	3,104

5.0 RISK EVALUATION/MANAGEMENT

PCE and vinyl chloride concentrations in groundwater at the site have not exceeded their proposed RBCC concentrations since assessment and monitoring activities began in 2011. The highest concentrations of PCE and vinyl chloride detected at the site have been 133 µg/l and 2,570 µg/l, respectively.

Prior to full-scale remedial implementation (fall 2015), TCE concentrations in groundwater were above the proposed RBCC in the following wells: MW-13S, MW-16S, MW-17S, and MW-18S. Since full-scale implementation, TCE concentrations are and have remained below the proposed RBCC in groundwater from these wells. Additional monitoring wells and injection wells have been installed and sampled since remedial implementation. Groundwater analytical results have indicated TCE concentrations above the proposed RBCC in two locations of the site. Specifically, groundwater from injection wells INJ-36 (formerly monitoring well MW-25S) and INJ-38 had initial concentrations of TCE of 4,770 µg/l and 3,440 µg/l, respectively. However, subsequent monitoring of groundwater from injection well INJ-36, after remedial implementation, has indicated a substantial decrease in TCE concentrations to 147 µg/l. The injection well INJ-38 location will also be subject to remedial activities (amendment injections) and concentrations of TCE are expected to decrease as observed across the site.

6.0 UNCERTAINTY ANALYSIS

As is typical in risk evaluations, the use of generic screening criteria and development of risk-based criteria have associated uncertainties. These uncertainties are addressed by making protective assumptions such that risks are more likely to be overestimated than underestimated. The primary areas of uncertainty and associated limitations are qualitatively discussed in this section.

6.1 Screening Level Selection

The selection of VISLs used to select COPCs relies upon the use of toxicity values developed by the USEPA to evaluate potential chronic toxicity of COPCs. While these values may be estimated from human experimental or epidemiological data, they are more likely to be based on animal data generated from a variety of toxicological studies, which may both over- and underestimate the potential for toxicity.

Inhalation toxicity values are not available for some of the constituents (i.e., 1,1-dichloroethene, cis-1,2-dichloroethene, total 1,2-dichloroethene, ethane, ethene, and methane) reported as detected at the site. As such, the potential for risk from the inhalation of these constituents cannot be quantitatively assessed. However, while there is a degree of risk from exposure to all organic chemicals, toxic effects from exposure to these compounds is thought to be less than those with available toxicity criteria. The potential for risk associated with these constituents is deemed minimal at the site.

There is no available screening criteria for soil to indoor air VISLs, primarily due to the high degree of uncertainty with estimating partitioning of VOCs from soil into soil vapor. While excluding soil from this evaluation may underestimate risks, the VOCs in soil at the site are only detected at depths greater than 20 ft bgs and, therefore, are unlikely to be a significant source of impacts to indoor air. In addition, the CVOCs in soil are not currently beneath any occupied structures at the site, are within the current remedial implementation area, and will likely decrease as remedial activities continue at the site.

6.2 Johnson & Ettinger Model

There are various sources of uncertainty in the evaluation of vapor intrusion risks using the J&E Model. As potential future use of the property as either commercial/industrial development or residential development is unknown at this time, the potential building properties, dimensions, and foundation structures are also not known. These unknowns have the potential to overestimate and underestimate potential levels of attenuation, which in turn could result in either decreased or elevated RBCC. In addition, the use of conservative default soil properties for parameters for which site-specific values are not available has the potential to overestimate risk.

7.0 SUMMARY

Based on the results of this evaluation, the COPCs at the site are PCE, TCE, and vinyl chloride in groundwater. Maximum concentrations of PCE and vinyl chloride detected in groundwater have not exceeded their calculated RBCC. Since full-scale implementation of the remedial activities, TCE concentrations have not exceeded its calculated RBCC in groundwater, with the exception of groundwater from INJ-38, which was recently installed and sampled (June 2017). Current groundwater concentrations of COPCs indicate that there is a potential for vapor intrusion at the site in the vicinity of INJ-38; however, this area is scheduled for remedial treatment and is not currently within 100 ft of any occupied structure. Therefore, groundwater in the vicinity of injection well INJ-38 does not present a current risk while remedial activities are being conducted and will likely present even less of a risk upon completion of remedial activities.

8.0 REFERENCES

- USEPA, 2004. Johnson & Ettinger Model for Subsurface Vapor Intrusion into Buildings. Last updated June 2004. Located at https://www.epa.gov/vaporintrusion/epa-spreadsheet-modeling-subsurface-vapor-intrusion
- USEPA, 2014. Vapor Intrusion Screening Levels Users Guide May 2014. Available at: https://www.epa.gov/sites/production/files/2015-09/documents/visl-usersguide_1.pdf
- USEPA. 2015. OSWER Technical Guidance for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Sources to Indoor Air. Office of Solid Waste and Emergency Response. Pub No. 9200.2-154. June.
- USEPA, 2016. Vapor Intrusion Screening Levels June 2016. Available at: https://www.epa.gov/vaporintrusion/vapor-intrusion-screening-levels-visls
- USEPA, 2017. Regional Screening Level Tables June 2017. Available at: http://www.epa.gov/reg3hwmd/risk/human/rb-concentration table/index.htm

List of Tables

- Table 1 Occurrence, Distribution, and Selection of Chemicals of Potential Concern in Groundwater
- Table 2 Occurrence, Distribution, and Selection of Chemicals of Potential Concern in Soil
- Table 3 Risk-Based Closure Concentrations for the Carolina Groundwater

List of Figures

Figure 1 Monitoring Well Locations and Groupings

List of Attachments

Attachment A-1 Groundwater Data Set

Attachment A-2 Soil Data Set

Attachment B-1 Depth to Groundwater Evaluation Attachment B-2 Average Depth to Groundwater

Attachment C Johnson & Ettinger Models

October 2017 103-82746B

TABLE 1 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CONSTITUENTS OF POTENTIAL CONCERN IN GROUNDWATER

Pfizer, Inc. Carolina, Puerto Rico

Exposure Point	CAS Number	Constituent	Minim Concentr (Qualifi (1)	ation	Maximui Concentra (Qualifie (1)	tion	Units	Location of Maximum Concentration	Detection Frequency	Rang Metl Detec	ction	Concentration Used for Screening (2)	Background Value (3)	Vapor Intru Screening L Toxicity Va (µg/L) (N/C) (4)	evels.	Potential ARAR Value (µg/l)	Potential ARAR/TBC Source	COPC Flag (Y/N)	Rationale for Selection or Deletion (5)
Vapor		Dichloroethylene, 1,1-	0.50		68		ug/l	MW-17S	134/181	0.50	50	68	NA	82	n	NA	NA	N	BSL
Intrusion to	156-59-2	Dichloroethylene, 1,2-cis-	0.50		10,200		ug/l	MW-17S	171/181	0.50	12	10,200	NA	NA		NA	NA	N	NSL
Indoor Air - Shallow	156-60-5	Dichloroethylene, 1,2 (total)	0.50		10,300		ug/l	MW-17S	173/181	0.50	0.50	10,300	NA	NA		NA	NA	N	NSL
GW	74-84-0	Ethane	0.01		86		ug/l	MW-16S	44/53	0.018	4.9	86	NA	NA		NA	NA	N	NSL
	74-85-1	Ethene	0.022	I	110		ug/l	INJ-7	51/53	0.20	0.68	110	NA	NA		NA	NA	N	NSL
	74-82-8	Methane	0.12	I	7,410		ug/l	MW-16S	52/53	0.20	0.20	7,410	NA	NA		NA	NA	N	NSL
	127-18-4	Tetrachloroethylene	0.50		133		ug/l	MW-03S	67/181	0.50	50	133	NA	24	n	NA	NA	Υ	ASL
	79-01-6	Trichloroethylene	0.56	I	5,930		ug/l	MW-17S	164/181	0.50	12	5,930	NA	2.2	n	NA	NA	Υ	ASL
	75-01-4	Vinyl Chloride	1.0		2,570		ug/l	MW-16S	152/181	0.50	12	2,570	NA	2.5	С	NA	NA	Υ	ASL

Footnote Instructions:

(1) I = The reported value is between the laboratory MDL and the laboratory practical quantitation limit (PQL).

(2) Maximum detected concentration used for screening.

(3) No background value available.

(4) All compounds are screened against the Environmental Protection Agency's (EPA) Vapor Instrusion Screening

Levels dated June 2016 (cancer benchmark value = 1E-06; HQ =0.1).

(5) Rationale Codes Selection Reason: Above Screening Level (ASL)

Deletion Reason: Below Screening Level (BSL)

No Screening Level (NSL)

Definitions:

NA = Not Applicable

COPC = Constituent of Potential Concern

ARAR = Applicable or Relevant and Appropriate Requirement

n = Noncarcinogen

c = Carcinogen

Y = YesN = No

μg/L = micrograms per liter

October 2017 103-82746B

TABLE 2 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CONSTITUENTS OF POTENTIAL CONCERN IN SOIL

Pfizer, Inc. Carolina, Puerto Rico

Exposure Point	CAS Number	Constituent	Minimun Concentrati (Qualifier) (1)	on	Maximur Concentra (Qualifie (1)	tion	Units	Location of Maximum Concentration		Range of Detection			Background Value (3)	Vapor Intr Screeni Levels To Value	ng xicity	Potential ARAR Value	Potential ARAR/TBC Source	COPC Flag (Y/N)	Rationale for Selection or Deletion (4)
		Dichloroethylene, 1,2-cis-	0.0034	I	0.56		mg/kg	TB-43	12/40	0.0013	0.012	0.56	NA	NA		NA	NA	N	NSL
Intrusion to	156-60-5	Dichloroethylene, 1,2 (trans)	0.0041	ı	0.0043	-	mg/kg	TB-43	2/40	0.0016	0.014	0.0043	NA	NA		NA	NA	N	NSL
Indoor Air - Soil	67-66-3	Chloroform	0.0035		0.0045	ı	mg/kg	TB-52	2/18	0.0024	0.0049	0.0045	NA	NA		NA	NA	N	NSL
		Petroleum Range Organics	29		935		mg/kg	TB-33	2/6	4.9	25	935	NA	NA		NA	NA	N	NSL
	127-18-4	Tetrachloroethylene	0.0028	I	0.0053		mg/kg	TB-54	2/40	0.0013	0.012	0.0053	NA	NA		NA	NA	N	NSL
	79-01-6	Trichloroethylene	0.0032	I	6.3		mg/kg	TB-52	13/40	0.0014	0.013	6.3	NA	NA		NA	NA	N	NSL
	75-01-4	Vinyl Chloride	0.0035	I	0.045		mg/kg	TB-43	6/40	0.0014	0.013	0.045	NA	NA		NA	NA	N	NSL

Footnote Instructions:

(1) I = The reported value is between the laboratory MDL and the laboratory practical quantitation limit (PQL).

(2) Maximum detected concentration used for screening.

(3) No background value available.

(4) Rationale Codes No Screening Level (NSL)

Definitions:

NA = Not Applicable

COPC = Constituent of Potential Concern

ARAR = Applicable or Relevant and Appropriate Requirement

N = No

mg/kg = milligrams per kilogram

October 2017 103-82746B

TABLE 3 RISK-BASED CLOSURE CONCENTRATIONS FOR GROUNDWATER


Pfizer, Inc. Carolina, Puerto Rico

	Constituent of			mum	Attenuation	Henry's Law	Indoor Air RSL ⁵				Ground Risk-E Closure	Based
CAS	Potential Concern ¹	Units	Concer	ected ntration ²	Factor (unitless) ⁴	Constant (unitless) ³	Carcinogenic Value (ug/m³)	Non- Carcinogenic Value (ug/m³)	Target Organ ⁶	Selected Value (ug/m³) ⁷	Value	Units
Group 1												
79-01-6	Trichloroethylene	ug/l	26		8.9E-06	0.40	60	8.8	Immunological/Developmental/Cardiac	8.8	2,482	ug/l
Group 2												
127-18-4	Tetrachloroethylene	ug/l	3.0		1.0E-05	0.72	940	180	Neurological	180	24,038	ug/l
79-01-6	Trichloroethylene	ug/l	1,970		8.6E-06	0.40	60	8.8	Immunological/Developmental/Cardiac	8.8	2,570	ug/l
75-01-4	Vinyl Chloride	ug/l	1,060		1.6E-05	1.1	56	440	Liver	56	3,162	ug/l
Group 3												
127-18-4	Tetrachloroethylene	ug/l	3.9		1.0E-05	0.72	940	180	Neurological	180	24,272	ug/l
79-01-6	Trichloroethylene	ug/l	4,000		8.5E-06	0.40	60	8.8	Immunological/Developmental/Cardiac	8.8	2,588	ug/l
75-01-4	Vinyl Chloride	ug/l	2,570		1.6E-05	1.1	56	440	Liver	56	3,182	ug/l
Group 4												
127-18-4	Tetrachloroethylene	ug/l	3.5		1.1E-05	0.72	940	180	Neurological	180	23,585	ug/l
79-01-6	Trichloroethylene	ug/l	5,930		8.5E-06	0.40	60	8.8	Immunological/Developmental/Cardiac	8.8	2,597	ug/l
75-01-4	Vinyl Chloride	ug/l	1,830		1.6E-05	1.1	56	440	Liver	56	3,202	ug/l
Group 5												
127-18-4	Tetrachloroethylene	ug/l	31		1.0E-05	0.72	940	180	Neurological	180	24,038	ug/l
79-01-6	Trichloroethylene	ug/l	12		8.6E-06	0.40	60	8.8	Immunological/Developmental/Cardiac	8.8	2,567	ug/l
75-01-4	Vinyl Chloride	ug/l	2.1		1.6E-05	1.1	56	440	Liver	56	3,162	ug/l
Group 6												
127-18-4	Tetrachloroethylene	ug/l	133		1.1E-05	0.72	940	180	Neurological	180	23,585	ug/l
79-01-6	Trichloroethylene	ug/l	109		8.7E-06	0.40	60	8.8	Immunological/Developmental/Cardiac	8.8	2,535	ug/l
75-01-4	Vinyl Chloride	ug/l	6.3		1.6E-05	1.1	56	440	Liver	56	3,104	ug/l
Group 7												
127-18-4	Tetrachloroethylene	ug/l	0.72		1.0E-05	0.72	940	180	Neurological	180	24,272	ug/l
79-01-6	Trichloroethylene	ug/l	3.2		8.7E-06	0.40	60	8.8	Immunological/Developmental/Cardiac	8.8	2,535	ug/l
Group 8												
127-18-4	Tetrachloroethylene	ug/l	18		1.0E-05	0.72	940	180	Neurological	180	24,038	ug/l
79-01-6	Trichloroethylene	ug/l	4,770		8.6E-06	0.40	60	8.8	Immunological/Developmental/Cardiac	8.8	2,570	ug/l
75-01-4	Vinyl Chloride	ug/l	198		1.6E-05	1.1	56	440	Liver	56	3,162	ug/l
Site-Wide												
127-18-4	Tetrachloroethylene	ug/l	133		1.1E-05	0.72	940	180	Neurological	180	23,585	ug/l
79-01-6	Trichloroethylene	ug/l	5,930		8.9E-06	0.40	60	8.8	Immunological/Developmental/Cardiac	8.8	2,482	ug/l
75-01-4	Vinyl Chloride	ug/l	2,570		1.6E-05	1.1	56	440	Liver	56	3,104	ug/l

Footnote Instructions:

- (1) Constituents on this table exceed their risk-based VISLs.
- .(2) Maximum Detected Concentrations represent the maximum concentration detected in the primary samples used in the analysis.
- (3) Taken from the USEPA RSL table, dated June 2017.
- (4) Site-specific attenuation factors calculated using the USEPA Johnson & Ettinger Model, as presented in Appendix A.
- (5) Taken from the USEPA RSL tables for industrial worker ambient air, adjusted for a target cancer risk of 2.0E-05 and HQ of 1.0.
- (6) Target organs taken from the USEPA IRIS database profile for each COC, which is the source of the toxicity factor used to determine the non-cancer RLS value.
- (7) The lower of the carcinogenic and non-carcinogenic adjusted RSL values.

LEGEND

SHALLOW MONITORING WELL

DEEP MONITORING WELL

BEDROCK INJECTION TREATMENT WELL (SCREEN INTERVAL ~20 TO 40 FEET-BGS)

OVERBURDEN INJECTION TREATMENT WELL (SCREEN INTERVAL ~40 TO 50 FEET BGS)

OVERBURDEN INJECTION TREATMENT WELL (SCREEN INTERVAL ~50 TO 60 FEET BGS)

INJECTION TREATMENT WELL LOCATION (OVERBURDEN)

NOTE(S

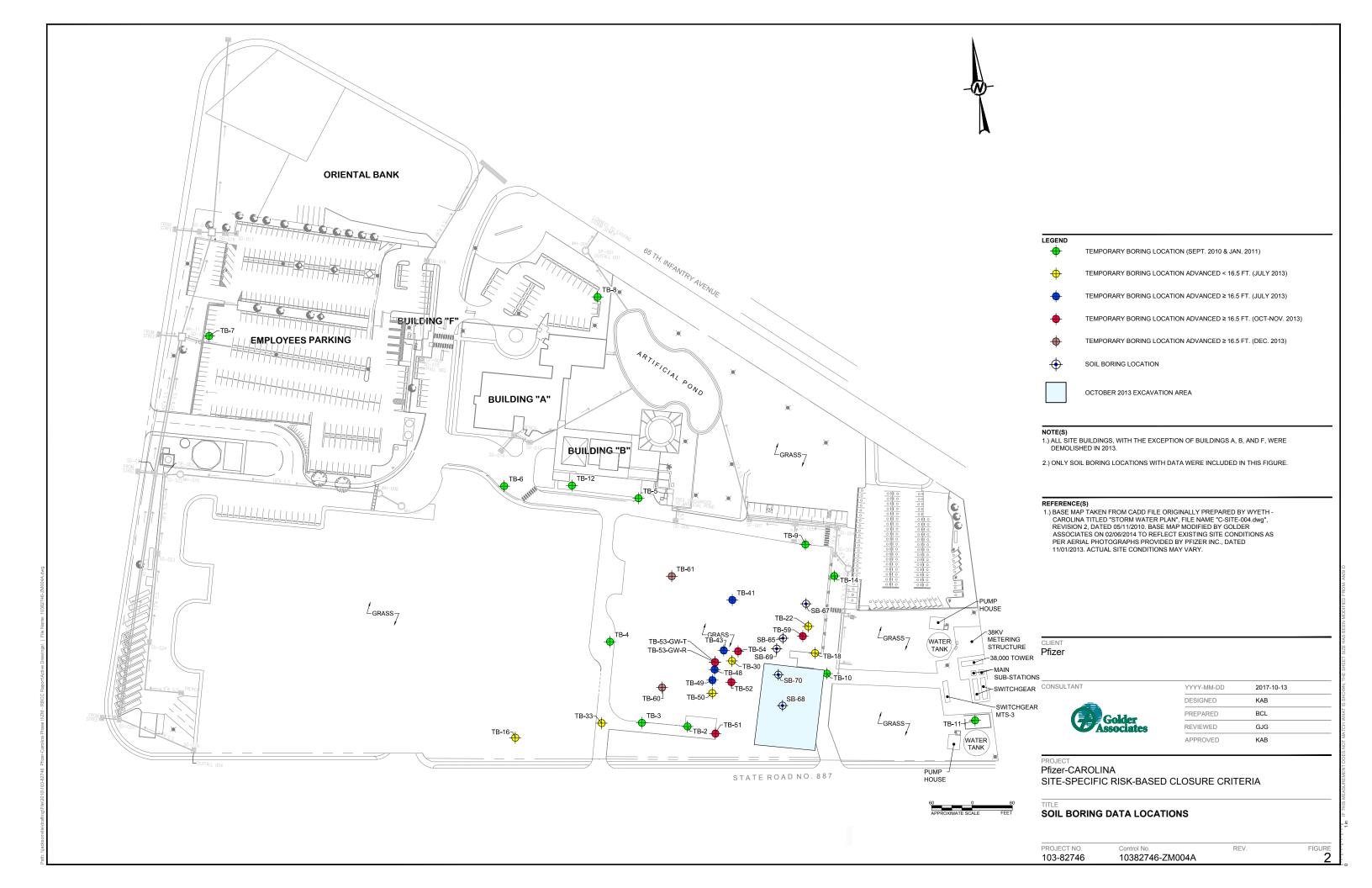
1.) ALL SITE BUILDINGS WITH THE EXCEPTION OF BUILDINGS A, B, AND F WERE DEMOLISHED IN 2013.

REFERENCE(S)

1.) BASEMAP TAKEN FROM WYETH - CAROLINA, FILE NAME "C-SITE-004.dwg", TITLED "STORM WATER PLAN", DATED 08/18/2008.

Pfizer

CONSULTANT


YYYY-MM-DD	2017-10-13
DESIGNED	KAB
PREPARED	BCL
REVIEWED	GJG
APPROVED	KAB

ROJECT

Pfizer-CAROLINA SITE-SPECIFIC RISK-BASED CLOSURE CRITERIA

GROUNDWATER DATA LOCATIONS

PROJECT NO. Control No. REV. FIGURE 103-82746 10382746-ZM004 1

ATTACHMENT A SAMPLING DATA

	Sample		ethene	nene	oethene	loroethene	ethene	de			
Location	Group	Date	Tetrachloroethene	Trichloroethene	1,1-Dichloroethene	cis-1,2-Dichloroethene	1,2-Dichloroethene (Total)*	Vinyl Chloride	Methane	Ethane	Ethene
		02/02/2011	0.5	2.8	1.2	0.50 U	0.50 U	0.50 U	NM	NM	NM
MW-01S	7	10/17/2011	0.64 I	3.2	0.80 I	0.50 U	0.50 U	0.50 U	NM	NM	NM
		09/12/2012	0.72	2.3	0.50 U	0.50 U	0.50 U	0.50 U	0.12	0.20 U	0.037 I
		02/02/2011 10/18/2011	1.4 1.6	1,630	9.9 7.9	1,490	1,500	303 253	NM NM	NM NM	NM NM
		09/11/2012	1.4	1,830 1,090	7.9	1,780 1,200	1,790 1,200	222	410	5.3	4.3
		04/17/2013	1.5	776	9.4	1,280	1,290	130	NM	NM	NM
		12/04/2013	1.3	1,330	7.3	1,390	1,400	329	600	0.87	1.7
		02/03/2015	1.6	1,550	8.3	1,710	1,730	248	NM	NM	NM
		03/16/2015	1.3	1,230	7.4	1,370	1,380	186	200	5.0	2.8
MW-02S	3	04/21/2015	1.6	1,260	9.3	1,440	1,450	157	150	3.9	2.3
		08/07/2015	1.4	1,560	8.3	1,640	1,660	257	NM	NM	NM
		01/17/2016	0.50 U	278	1.9	381	393	19.3	NM	NM	NM
		04/18/2016	0.56 I	661	5.0	1,080	1,110	354	NM	NM	NM
		07/26/2016	50.0 U	1,350	50.0 U	1,420	1,550	318	NM	NM	NM
	12/21/2016	0.50 U	353	4.1	621	770	193	NM	NM	NM	
		06/20/2017	0.50 U	106	1.9	494	692	185	NM	NM	NM
		02/02/2011	85.4	20	6.9	32.2	32.6	4.3	NM	NM	NM
		10/18/2011	133	34.3	7.5	46.9	47.3	4.1	NM	NM	NM
MW-03S	6	09/12/2012	110	30.0	7.5	46.6	46.8	4.2	1.0	0.19 I	0.14 I
		04/17/2013	68	37.9	9.8	54.4	54.9	3.5	NM	NM	NM
		12/04/2013	132	36.8	7.2	45.9	46.2	6.3	0.46	0.16 I	0.045 I
		02/02/2011	0.50 U	0.50 U	0.5	0.50 U	0.50 U	0.50 U	NM	NM	NM
MW-04S	1	10/17/2011	0.50 U	0.50 U	0.58 I	0.50 U	0.50 U	0.50 U	NM	NM	NM
		09/12/2012	0.50 U	0.50 U	0.54 l	0.50 U	0.50 U	0.50 U	9.1	0.010 I	0.027 I
		02/02/2011 10/17/2011	0.50 U 0.50 U	1.8 2.4	1.7 0.74 l	0.5 0.59 I	0.5 0.59 I	0.50 U 0.50 U	NM NM	NM NM	NM NM
MW-05S	1	09/12/2012	0.50 U	2.4	1.1	0.39 I	0.391	0.50 U	2.6	0.070 I	0.064 I
		12/05/2013	0.50 U	3.7	1.1	0.741	0.741	0.50 U	1.9	0.070 T	0.0041
		02/02/2011	0.50 U	19	7.4	4.1	4.1	0.50 U	NM	NM	NM
		10/18/2011	0.50 U	17.9	5.9	4.4	4.4	0.50 U	NM	NM	NM
MW-06S	1	09/11/2012	0.50 U	17.8	5.0	3.5	3.5	0.50 U	3.0	0.017 I	0.052 I
		12/05/2013	0.50 U	26.0	6.3	4.4	4.5	0.50 U	3.3	0.018 U	0.030 I
		10/17/2011	2.2	538	2.1	324	327	41.6	NM	NM	NM
		09/11/2012	2.1	467	2.7	309	312	77.2	0.20 U	0.20 U	0.20 U
		04/17/2013	3.0	375	4.1	403	408	70.8	NM	NM	NM
		12/03/2013	1.9	703	3.5	494	497	99.2	120	2.0	0.63
		02/03/2015	1.7	666	2.4	509	519	68.7	NM	NM	NM
		03/17/2015	1.5	645	3.6	547	552	92.5	72	1.8	0.62
		04/22/2015	2.0	744	4.5	636	643	100	75	2.2	0.69
		07/17/2015	NM	NM	NM	NM	NM	NM	NM	NM	NM
MW-07S	2	07/21/2015	NM	NM	NM	NM	NM	NM	NM	NM	NM
		07/28/2015	NM	NM	NM	NM	NM	NM	NM	NM	NM
		07/31/2015	1.2 U	68.9	6.2	1,536	1,546	1.2 U	NM	NM	NM
		08/11/2015	2.5 U	315	4.7 l	1,210	1,220	116	NM	NM	NM
		01/17/2016	0.50 U	3.1	0.50 U	11.4	25.1	1,060	NM	NM	NM
		04/18/2016	0.50 U	23.6	0.76 l	77.8	84.8	186	NM	NM	NM
		07/26/2016	2.5 U	14.7	2.5 U	248	300	223	5,370	3.8 I	92.7
		12/21/2016	0.50 U	0.50 U	1.5	285	358	193	NM	NM	NM
		06/20/2017	0.50 U	0.66 I	0.50 U	23	34	23	1,330	4.9 U	6.9 I

	Sample		ethene	hene	oethene	cis-1,2-Dichloroethene	oethene	ide			
Location	Group	Date	Tetrachloroethene	Trichloroethene	1,1-Dichloroethene		1,2-Dichloroethene (Total)*	Vinyl Chloride	Methane	Ethane	Ethene
MW-08S	5	10/17/2011 09/12/2012	25.9 31.4	12.1 11.3	2.3 2.4	10 10.7	10 10.7	2.1 0.50 U	NM 0.35	NM 0.059 I	NM 0.086 I
10100-003	5	12/05/2013	10.9	4.3	0.85 I	2.9	2.9	0.50 U	0.33	0.039 T	0.035 I
		10/17/2011	0.50 U	14.3	9.2	0.99 I	0.99 I	0.50 U	NM	NM	NM
MW-09S	1	09/11/2012	0.50 U	13.7	8.5	0.76 I	0.76 l	0.50 U	0.68	0.20 U	0.050 I
MW-10S	5	12/04/2013 12/03/2013	0.50 U 29.7	13.7 11.6	8.1 2.8	0.85 I 10.8	0.85 I 10.8	0.50 U 1.3	1.3	0.018 U 0.37	0.026 I 0.032 I
MW-11S	3	12/03/2013	0.50 U	62.6	0.50 U	8.1	8.8	1.3	8.6	2.0	0.84
MW-12S	6	12/02/2013	28.3	109	2.9	44	44.6	1.6	4.2	0.49	0.53
		12/02/2013	3.5	3,510	12.1	2,610	2,640	429	550	14	13
		12/2/2013 ¹ 01/03/1900	3.2 0.85 I	2,770 1,310	13.9 5.3	1,890 1,630	1,920 1,640	324 134	540 100	14 2.0	14 3.2
		04/20/2015	1.3	1,310	14	3,100	3,140	274	210	5.3	10
MW-13S	4	04/19/2016	0.50 U	1.2	0.50 U	2.6	18.4	5.1	NM	NM	NM
		07/25/2016	0.50 U	89.9	6.2	2,040	2,080	553	NM	NM	NM
		12/21/2016	0.50 U	31.1	0.50 U	158	347	74	NM	NM	NM
MW-14S	5	06/20/2017 12/04/2013	0.50 U 0.50 U	161 1.2	2.5 0.50 U	256 0.50 U	606 0.50 U	85.1 0.50 U	NM 12	NM 5.2	NM 0.13 I
MW-15S	2	12/02/2013	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	52	11	2.9
		02/03/2015	3.9	4,000	20.3	4,210	4,300	547	1,000	24	14
		03/16/2015	3.5	2,370	16.3	3,180	3,210	397	800	13	8.4
		04/21/2015 08/07/2015	3.4 2.8	2,630 3,560	20 18	2,980 3,940	3,010 4,100	383 709	740 NM	15 NM	8.3 NM
MW-16S	3	12/04/2015	0.50 U	144	0.50 U	969	1,000	2,570	NM	NM	NM
		01/17/2016	0.50 U	290	3.2	737	791	1,020	NM	NM	NM
		07/26/2016	0.50 U	58.7	0.57 I	159	307	117	7,410	31.6	62.6
		12/21/2016	0.50 U	21.6	0.50 U	194	378	156	NM	NM	NM
		06/20/2017 02/04/2015	0.50 U 1.4	33.8 5,930	1.2 62.1	360 9,380	9,530	237 658	2,260 1,200	85.6 41	63.3 10
		03/16/2015	0.50 U	826	59.4	10,200	10,300	1,080	540	18	5.8
		04/20/2015	0.73 I	2,020	67.7	9,080	9,220	810	920	38	11
		08/07/2015	0.50 U	0.83 I	0.99 I	4.9	85	1,830	NM	NM	NM
MW-17S	4	09/11/2015	6.0 U	6.0 U	6.0 U	409	409	26.0	NM NM	NM NM	NM NM
		12/04/2015 07/27/2016	0.50 U 0.50 U	0.80 I 25.2	0.50 U 0.50 U	4.5 7.5	10.6 11.1	18.3 16.4	2,150	11.4	5.4 I
		12/21/2016	0.50 U	3.4	0.50 U	19.9	35.2	26.6	NM	NM	NM
		06/21/2017	0.50 U	11.0	1.3	300	482	260	NM	NM	NM
		02/04/2015	0.68 I	3,190	36.6	5,440	5,530	354	1,200	21	5
		03/16/2015 04/20/2015	0.50 U 0.50 U	220 917	42.6 45.2	8,160	8,250	414 449	960 790	16 16	3.9 5.0
MW-18S	4	08/07/2015	0.50 U	0.50 U	0.50 U	5,340 2.3	5,430 61.9	1,820	NM	NM	NM
		09/11/2015	12.0 U	12.0 U	12.0 U	54.8	86.9	114	NM	NM	NM
		06/20/2017	0.50 U	108	1.8	341	571	773	NM	NM	NM
		07/07/2015	1.2 U	556	12.8	4,502	4,543	317	NM	NM	NM
MW-19S	4	08/07/2015 09/11/2015	0.50 U 12.0 U	8.8 12.0 U	0.50 U 12.0 U	166 12.0 U	212 28.4	486 12.0 U	NM NM	NM NM	NM NM
100		04/19/2016	0.50 U	0.50 U	0.50 U	2.4	5.4	5	NM	NM	NM
		12/21/2016	0.50 U	1.8	0.50 U	12.3	22	11	NM	NM	NM
		07/07/2015	1.2 U	532	9.00	2,544	2,568	181	NM	NM	NM
		08/07/2015	0.50 U	151	4.4	645	670	426	NM	NM	NM
MW-20S	4	09/11/2015 01/17/2016	12.0 U 0.50 U	12.0 U 113	12.0 U 1.6	12.0 U 193	35.6 244	12.0 U 61.3	NM NM	NM NM	NM NM
		07/27/2016	0.50 U	103	1.8	159	224	68.8	NM	NM	NM
		07/10/2015	1.2 U	1,649	7.0	3,282	3,292	298	NM	NM	NM
		07/31/2015	1.2 U	1,511	7.0	1,608	1,621	1.2 U	NM	NM	NM
		08/11/2015	2.5 U	1,970	8.2	1,480	1,490	214	NM	NM	NM
MW-21S	2	04/18/2016	0.50 U	141	3.9	776	793	816	NM	NM	NM
		07/26/2016	12.5 U	161	12.5 U	1,400	1,460	457	NM	NM	NM
		12/21/2016	0.50 U	119	5.4	858	948	232	NM ooa	NM 12.5	NM
MW-22S	2	06/20/2017 01/17/2016	0.50 U 0.50 U	10.6 5.9	0.63 I 0.50 U	159 2.8	205 3.0	117 1.0	884 NM	12.5 NM	4.0 I NM
IVIVV-ZZO		01/11/2010	0.50 0	۵.5	0.50 0	۷.0	5.0	1.0	IAINI	INIVI	INIVI

	Sample		oethene	hene	oethene	cis-1,2-Dichloroethene	oethene	ide			
Location	Group	Date	Tetrachloroethene	Trichloroethene	1,1-Dichloroethene		1,2-Dichloroethene (Total)*	Vinyl Chloride	Methane	Ethane	Ethene
MW-23S	3	01/17/2016	1.2	246	2.5	35.9	40.2	2.4	NM	NM	NM
		07/27/2016 01/17/2016	1.3 0.50 U	263 153	3.8 0.50 U	42.5 56.5	48.8 57	3.0 18.0	NM NM	NM NM	NM NM
		04/20/2016	0.50 U	55.6	0.55 I	102	103	7.6	NM	NM	NM
MW-24S	3	07/27/2016	0.50 U	145	0.66 I	53.4	53.9	6.3	NM	NM	NM
		12/21/2016	0.50 U	109	0.50 U	36.3	37.0	5.6	NM	NM	NM
MW-26S	8	06/21/2017	17.7	684	1.3	69.1	74.5	37.9	NM	NM	NM
MW-27S	8	11/18/2016	8.2	897	4.7	105	115	18	NM	NM	NM
MW-28S	3	11/18/2016	0.50 U	35.2	0.50 U	7.1	7.5	0.50 U	NM	NM	NM
MW-29S	8	06/21/2017	0.50 U	26.0	0.50 U	8.7	9.2	2.0	41.2	4.9 U	0.68 U
MW-31S INJ-1	2	06/20/2017	0.61	119	0.50 U	23.2	39.2 47.6	19.4 543	NM NM	NM NM	NM NM
1143-1	2	08/11/2015 02/03/2015	2.5 U 1.4	2.5 U 1,170	2.5 U 4.2	25.5 982	1,020	146	NM	NM	NM
INJ-2	2	04/21/2015	1.7	1,250	7.4	1,200	1,210	162	900	4.6	1.6
IINJ-Z	2	07/31/2015	1.2 U	2.8	3.0	931	936	1.2 U	NM	NM	NM
		08/11/2015	2.5 U 1.8	2.5 U	4.3 l 9.3	1,470	1,480	91.8 183	NM 590	NM 5.0	NM 1.6
INJ-3	2	04/22/2015 08/11/2015	2.5 U	1,750 5.2	10.1	1,480 3,540	1,490 3,560	206	NM	NM	NM
	_	07/28/2016	0.50 U	11.2	0.50 U	48.0	88.7	160	NM	NM	NM
	_	08/11/2015	2.5 U	1,290	6.6	1,540	1,580	159	NM	NM	NM
INJ-4	3	07/27/2017	0.50 U	7.5	0.50U	169	218	78	NM	NM	NM
		02/03/2015	3.1	2,260	13.8	3,000	3,050	373	NM	NM	NM
INJ-5	3	04/21/2015	1.7	1,210	14.7	2,650	2,690	304	1,400	12	6.7
		07/26/2017 04/21/2015	0.50 U 3.2	0.61 I 2,210	0.50 U 16.9	177 3,710	363 3,750	172 451	NM 650	NM 25	NM 12
INJ-6	3	07/27/2017	0.50 U	0.56 I	6.1	1,840	2,340	1,000	NM	NM	NM
		04/20/2015	0.50 U	29.6	1.5	315	331	119	360	1.5	110
INJ-7	4	08/07/2015	0.50 U	0.50 U	0.50 U	2.4	10.6	39.8	NM	NM	NM
		01/17/2016	0.50 U	19.9	0.50 U	27.6	54.1	48.1	NM	NM	NM
INJ-8	4	08/07/2015	0.50 U	0.50 U	0.50 U	10.6	19.6	17.9	NM	NM	NM
INJ-9	4	02/04/2015	0.50 U	1,600	24.4	3,860	3,920	379	NM	NM	NM
		08/07/2015 02/03/2015	0.50 U 0.50 U	0.61 I 2,020	0.50 U 37.0	5.9 4,690	34.9 4,780	420 444	NM NM	NM NM	NM NM
INJ-10	4	04/20/2015	0.50 U	634	29.7	4,090	5,510	1,090	820	16	5.7
		08/07/2015	0.50 U	0.85 I	0.50 U	14.2	53.3	1,410	NM	NM	NM
INJ-11	4	08/07/2015	0.50 U	1.5	0.50 U	25.2	26.7	4.9	NM	NM	NM
INJ-12	4	04/20/2015	0.50 U	169	15.8	1,250	1,370	236	510	1.1	28
		08/07/2015	0.50 U	0.50 U	0.50 U	7.3	59.6	167	NM	NM	NM
		07/10/2015 07/31/2015	1.2 U 1.2 U	1,225 595	7.50 7.3	1,170 2,022	1,180 2,030	235 1.2 U	NM NM	NM NM	NM NM
INJ-15	2	08/11/2015	2.5 U	3.2 I	12.5	3,630	3,670	220	NM	NM	NM
		01/17/2016	0.50 U	0.54 I	0.50 U	29.9	33.0	291	NM	NM	NM
		01/17/2016	2.0	1,810	8.2	1,810	1,830	421	NM	NM	NM
INJ-16	3	04/18/2016	0.50 U	35.6	0.50 U	203	229	163	NM	NM	NM
		07/27/2017	0.50 U	6.7	2.2	639	829	193	NM	NM	NM
INJ-17	3	01/17/2016	1.1	786	2.0	184	189	12.4	NM	NM	NM
INJ-18	3	01/17/2016	2.1	1,760	10	2,290	2,310	508	NM	NM	NM
		07/27/2017	0.50 U	19.4	2.6	669	854	138	NM	NM	NM
INJ-20	3	01/17/2016	0.50 U	391	1.5	222	224	17.7	NM	NM	NM
INJ-21 INJ-22	3	01/17/2016	0.50 U	252 35	1.0 3.5	105 754	106	4.8 209	NM NM	NM NM	NM NM
INJ-22 INJ-23	3	07/27/2017 01/17/2016	0.50 U 2.0	1,250	12.2	3,150	1,070 3,170	820	NM	NM	NM
1140-23		01/17/2016	5.9	3,870	9.9	1,610	1,630	238	NM	NM	NM
		04/20/2016	0.50 U	0.50 U	0.50 U	12.8	23.3	8.1	NM	NM	NM
INJ-24	3	07/27/2016	0.50 U	22.5	0.50 U	49.9	55.1	18.8	NM	NM	NM
		06/20/2017	0.70 I	1,120	5.4	1,240	1,970	328	NM	NM	NM
INJ-25	4	07/27/2017	0.50 U	217	7.6	942	1,190	353	NM	NM	NM
INJ-26	3	01/17/2016	0.67 I	155	1.1	134	135	21.4	NM	NM	NM
INJ-27	3	07/26/2016	0.61 l	237	2.6	33.1	37.2	2.9	NM	NM	NM

	Sample		ethene	nene	oethene	loroethene	ethene	de			
Location	Group	Date	Tetrachloroethene	Trichloroethene	1,1-Dichloroethene	cis-1,2-Dichloroethene	1,2-Dichloroethene (Total)*	Vinyl Chloride	Methane	Ethane	Ethene
INJ-28	3	07/26/2016	0.50 U	191	0.50 U	21.6	22.4	1.6	NM	NM	NM
INJ-29	3	07/26/2016	0.90 I	1,740	1.4	244	249	8.0	NM	NM	MM
INJ-30	3	07/27/2016	2.4	2,180	11.3	279	301	36	NM	NM	MM
INJ-31	2	11/17/2016	0.50 U	146	0.86 I	49.4	51.3	4.4	NM	NM	NM
INJ-32	2	11/17/2016	0.50 U	2.7	0.50 U	1.4	1.4	0.50 U	NM	NM	NM
INJ-33	3	11/18/2016	0.50 U	928	6.6	1,170	1,260	198	NM	NM	NM
INJ-34	3	11/17/2016	0.50 U	1,180	5.5	1,280	1,360	221	NM	NM	NM
1113-34	3	07/26/2017	0.50 U	44.2	0.89 I	81.9	84.9	10.8	NM	NM	NM
INJ-35	3	11/17/2016	0.53 l	769	3.7	1,170	1,340	263	NM	NM	NM
INJ-36	8	11/18/2016	15.5	4,770	3.6	547	567	93.1	NM	NM	NM
(MW-25S)	8	06/20/2017	0.50 U	147	2.8	1,010	1,020	198	NM	NM	NM
INJ-37		11/18/2016	8.2	897	4.7	105	115	18.4	NM	NM	NM
INJ-38		06/20/2017	3.2	3,440	2.8	390	406	22.5	NM	NM	NM
INJ-39		06/21/2017	1.2	1,180	18.3	1,140	1,160	191	505	7.2 I	2.1 I

Notes:

All analytical results reported in micrograms per liter (µg/L).

U - Indicates the compound was analyzed for but not detected at a concentration greater than the shown MDL.

I - The reported value is between the laboratory MDL and the laboratory practical quantitation limit (PQL).

MDL - Method Detection Limit

NM - Not Measured

Duplicate sample
*Total 1,2-Dichloroethene is for the *cis* and *trans* isomers.

Attachment A-2 Soil Dataset Pfizer, Carolina Facility, Puerto Rico

Sample Number	Sample Depth/ Interval	Sample Date	Chloroform	Tetrachloroethene (PCE)	Trichloroethene (TCE)	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl chloride	Petroleum Range Organics
TB-2	15	9/22/2010		0.0028 U	0.0032 U	0.0028 U	0.0034 U	0.0030 U	28.6
TB-3	4	9/22/2010		0.0027 U	0.0031 U	0.0027 U	0.0033 U	0.0030 U	4.9 U
TB-4	2	9/20/2010		0.0030 U	0.0034 U	0.0030 U	0.0037 U	0.0032 U	NA
TB-5	24	9/21/2010		0.0029 U	0.0033 U	0.0029 U	0.0036 U	0.0032 U	NA
TB-6	4	9/22/2010		0.0033 U	0.0037 U	0.0033 U	0.0041 U	0.0036 U	NA
TB-7	22	9/23/2010		0.0027 U	0.0031 U	0.0027 U	0.0033 U	0.0029 U	NA
TB-8	12	9/23/2010		0.0031 U	0.0035 U	0.0031 U	0.0038 U	0.0034 U	NA
TB-9	4	9/21/2010		0.0030 U	0.0034 U	0.0030 U	0.0037 U	0.0032 U	NA
TB-10	4	9/23/2010		0.0029 U	0.0033 U	0.0029U	0.0035 U	0.0031 U	25.0 U
TB-11	2	9/23/2010		0.0028 U	0.0031 U	0.0028 U	0.0034 U	0.0030 U	4.9 U
TB-12	5 - 6	9/23/2010		0.0032 U	0.0036 U	0.0032 U	0.0039 U	0.0035 U	5.5 U
TB-14	2 - 4	1/17/2011		0.0028 U	0.0031 U	0.0028 U	0.0034 U	0.0030 U	NA
TB-16	1 - 2	6/12/2013	0.0028 U	0.0024 U	0.0027 U	0.0024 U	0.0029 U	0.0026 U	NA
TB-18	2 - 3	6/13/2013	0.0033 U	0.0027 U	0.0918	0.0027 U	0.0034 U	0.0030 U	NA
TB-22	4 - 5	6/13/2013	0.0049 U	0.0041 U	0.0046 U	0.0041 U	0.0050 U	0.0044 U	NA
TB-33	3 - 5	7/16/2013	0.0041 U	0.0035 U	0.0039 U	0.0035 U	0.0043 U	0.0038 U	935
TB-41	20 - 22	7/17/2013	0.0037 U	0.0031 U	0.0222	0.0691	0.0038 U	0.0038 I	NA
TB-43	32 - 34	7/22/2013	0.0030 U	0.0025 U	0.575	0.555	0.0043 I	0.0454	NA
TB-48	24 - 26	7/24/2013	0.0031 U	0.0026 U	0.0032 I	0.0026 U	0.0032 U	0.0068	NA
TB-49	22 - 24	7/24/2013	0.0028 U	0.0024 U	0.0027 U	0.0034 I	0.0029 U	0.0026 U	NA
TB-50	22 - 24	7/24/2013	0.0024 U	0.0021 U	0.0023 U	0.0021 U	0.0025 U	0.0022 U	NA
TB-51	18 - 20	10/22/2013	0.0034 U	0.0029 U	0.0033 U	0.0029 U	0.0036 U	0.0031 U	NA
TB-52	20 - 22	10/23/2013	0.0035 U	0.0030 U	1.15	0.0311	0.0037 U	0.0032 U	NA
TB-52	22 - 24	10/23/2013	0.0045 I	0.0031 U	6.27	0.172	0.0038 U	0.0131	NA
TB-52	24 - 26	10/23/2013	0.0035	0.0029 U	1.63	0.0878	0.0036 U	0.0035 I	NA
TB-53	23	10/23/2013	0.0034 U	0.0029 U	0.0032 U	0.0029 U	0.0035 U	0.0031 U	NA
TB-53	24	10/23/2013	0.0032 U	0.0027 U	0.0031 U	0.0027 U	0.0033 U	0.0029 U	NA
TB-54	23	10/24/2013	0.0029 U	0.0053	0.005	0.007	0.0030 U	0.0062	NA
TB-59	23	10/29/2013	0.0046 U	0.0038 U	0.0043 U	0.0038 U	0.0047 U	0.0041 U	NA
TB-59-GW	35 - 40	10/29/2013		0.0116 U	0.0131 U	0.0116 U	0.0142 U	0.0125 U	NA
TB-61	24	12/8/2013		0.0013 U	0.0014 U	0.0013 U	0.0016 U	0.0014 U	NA
MW-13S-5	5	11/4/2013	0.0035 U	0.0029 U	0.0033 U	0.0029 U	0.0036 U	0.0032 U	NA
SB-65	20 - 22	11/7/2016		0.0022 U	0.279	0.145	0.0041 I	0.0024 U	NA
SB-65	24 - 26	11/7/2016		0.0027 U	0.0618	0.0063	0.0033 U	0.0029 U	NA
SB-65	32 - 34	11/9/2016		0.0035 U	0.0893	0.0132	0.0043 U	0.0038 U	NA
SB-67	18 - 20	11/9/2016		0.0026 U	0.0030 U	0.0078	0.0032 U	0.0028 U	NA
SB-68	14 - 16	11/9/2016		0.0027 U	0.0030 U	0.0027 U	0.0033 U	0.0029 U	NA
SB-69	20 - 22	4/26/2017		0.0030 U	0.0814	0.0030 U	0.0036 U	0.0032 U	NA
SB-70	12 - 14	4/26/2017		0.0036 U	0.875	0.00613	0.0044 U	0.0038 U	NA
SB-70	22 - 24	4/26/2017		0.0028 I	0.0029 U	0.0025 U	0.0031 U	0.0027 U	NA

Attachment A-2 Soil Dataset Pfizer, Carolina Facility, Puerto Rico

Trichlo Trichlo Cis-1,2 Cis-1,2 Cyinyl c
--

Notes:

All analytical results reported as mg/kg (milligrams per kilogram)

U = Indicates the compound was analyzed for but not detected at a concentration greater than the shown MDL.

I = The reported value is between the laboratory MDL and the laboratory practical quantitation limit (PQL).

MDL = Method Detection Limit

NA - constituent not analyzed

Sample depth interval is in feet below ground surface.

ATTACHMENT B DEPTH TO GROUNDWATER EVALUATION

Attachment B-1 Depths to Groundwater Pfizer, Carolina Facility, Puerto Rico

WELL DESIGNATION	MW-01S	MW-02S	MW-03S	MW-04S	MW-05S	MW-06S	MW-07S
DATE	Depth to Water (ft)	Depth to Water (ft)	Depth to Water (ft)	Depth to Water (ft)	Depth to Water (ft)	Depth to Water (ft)	Depth to Water (
2/2/2011	20.98	19.79	13.30	4.61	1.41	6.81	NI
10/17/2011	19.03	19.13	12.69	3.55	1.34	6.65	15.38
9/12/2012	20.41	19.99	13.21	3.85	1.39	6.58	16.14
4/17/2013	NM	20.84	14.45	NM	NM	NM	16.83
12/6/2013	NM	17.96	11.87	NM	0.40	5.62	14.15
2/3/2015	NM	19.75	13.23	NM	1.45	6.69	15.96
3/17/2015	NM	20.50	NM	NM	NM	NM	16.66
4/20/2015	NM	21.60	NM	NM	NM	NM	17.55
7/8/2015	NM	21.97	15.36	5.62	2.95	8.25	18.02
7/20/2016	21.63	20.34	13.91	3.10	1.28	7.17	16.60
6/19/2017	NM	20.23	NM	NM	NM	NM	16.45
Average	20.51	20.19	13.50	4.15	1.46	6.82	16.37
WELL DESIGNATION	MW-08S	MW-09S	MW-10S	MW-11S	MW-12S	MW-13S	MW-14S
DATE	Depth to Water (ft)	Depth to Water (ft)	Depth to Water (ft)	Depth to Water (ft)	Depth to Water (ft)	Depth to Water (ft)	Depth to Water
2/2/2011	NI	NI	NI	NI	NI	NI	NI
10/17/2011	16.38	4.70	NI	NI	NI	NI	NI
9/12/2012	16.86	4.99	NI	NI	NI	NI	NI
4/17/2013	NM	NM	NI	NI	NI	NI	NI
12/6/2013	15.52	3.97	17.04	18.33	9.93	20.93	16.85
2/3/2015	16.91	4.88	18.54	20.28	11.39	22.30	18.11
3/17/2015	NM	NM	NM	NM	NM	23.32	NM
4/20/2015	NM	NM	NM	NM	NM	23.00	NM
7/8/2015	19.10	6.43	20.75	22.62	13.74	24.71	21.24
7/20/2016	17.56	5.20	19.18	20.88	12.18	23.03	20.10
6/19/2017	NM	NM	NM	NM	NM	23.00	NM
Average	17.06	5.03	18.88	20.53	11.81	22.90	19.08
WELL DESIGNATION	MW-15S	MW-16S	MW-17S	MW-18S	MW-19S	MW-20S	MW-21S
DATE	Depth to Water (ft)	Depth to Water (ft)	Depth to Water (ft)	Depth to Water (ft)	Depth to Water (ft)	Depth to Water (ft)	Depth to Water
12/6/2013	16.45	NI	NI	NI	NI	NI	NI
2/3/2015	18.59	19.27	21.94	21.83	NI	NI	NI
3/17/2015	NM	20.23	23.03	22.79	NI	NI	NI
4/20/2015	NM	21.45	23.60	22.80	NI	NI	NI
7/8/2015	20.68	21.58	24.36	24.23	24.46	24.36	19.97
7/20/2016	19.17	19.88	24.65	23.12	22.81	22.69	18.47
6/19/2017	NM	22	22.00	22.20	NM	NM	18.45
Average	18.72	20.74	23.26	22.83	23.64	23.53	18.96
-	MW-22S	MW-23S	MW-24S				
WELL DESIGNATION			Donath to Motor (ft)				
WELL DESIGNATION DATE	Depth to Water (ft)	Depth to Water (ft)	Depth to water (ft)				
	Depth to Water (ft) 18.78	18.72	23.68				
DATE							
DATE 7/20/2016	18.78	18.72	23.68	MW-28S	MW-29S	MW-31S	
DATE 7/20/2016 Average	18.78 18.78 MW-25S	18.72 18.72 MW-26S	23.68 23.68 MW-27S	MW-28S Depth to Water (ft)			
DATE 7/20/2016 Average WELL DESIGNATION	18.78 18.78 MW-25S	18.72 18.72 MW-26S	23.68 23.68 MW-27S				
DATE 7/20/2016 Average WELL DESIGNATION DATE	18.78 18.78 MW-25S Depth to Water (ft)	18.72 18.72 MW-26S Depth to Water (ft)	23.68 23.68 MW-27S Depth to Water (ft)	Depth to Water (ft)	Depth to Water (ft)	Depth to Water (ft)	

ft - feet

NI - not indicated NM - not measured

Attachment B-2 Depths to Groundwater Pfizer, Carolina Facility, Puerto Rico

Group	Sample	Depth to Groundwater (ft)
	MW-04S	4.1
	MW-05S	1.5
1	MW-06S	6.8
	MW-09S	5.0
	Average	4.4
	MW-07S	16
	MW-15S	19
2	MW-21S	19
2	MW-22S	19
	MW-31S	15
	Average	18
	MW-02S	20
	MW-11S	21
	MW-16S	20
3	MW-23S	19
	MW-24S	24
	MW-28S	22
	Average	21
	MW-13S	23
	MW-17S	23
4	MW-18S	23
4	MW-19S	24
	MW-20S	24
	Average	23
	MW-08S	17
5	MW-10S	19
ວ	MW-14S	19
	Average	18
	MW-03S	14
6	MW-12S	12
	Average	13
7	MW-01S	21
7	Average	21
	MW-25S	18
	MW-26S	20
8	10110-0	18
•	MW-27S	10
	MW-27S MW-29S	20

ATTACHMENT C JOHNSON & ETTINGER MODELS

GW-SCREEN Version 3.1; 02/04 CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES

Х OR

Reset to Defaults

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES **ENTER ENTER** Initial Chemical groundwater CAS No. conc., C_W (μg/L) (numbers only,

127184 Tetrachloroethylene 1.04E-05

Chemical

Attenuation Factor

MORE **↓**

no dashes)

ENTER Depth		ENTER	ENTER	
below gra	ade		Average soil/	ENTER
	= -p	000		Average vapor
of enclos		SCS	groundwater	flow rate into bldg.
space flo	oor, to water table		temperature,	(Leave blank to calculate)
L_F	L _{WT}	directly above	T _S	Q_{soil}
(cm)	(cm)	water table	(°C)	(L/m)
15	556.96485	SC	25	5

MORE **↓**

ENTER Vadose zone SCS soil type	0.0	ENTER User-defined vandose zone soil vapor	ENTER Vadose zone SCS	ENTER Vadose zone soil dry	ENTER Vadose zone soil total	ENTER Vadose zone soil water-filled
(used to estimate soil vapor permeability)	OR	permeability, k _v (cm ²)	soil type Lookup Soil Parameters	bulk density, ρ_b^V (g/cm ³)	porosity, n ^V (unitless)	porosity, $\theta_w^{\ V}$ (cm ³ /cm ³)
SC			SC	1.63	0.385	0.197

MORE

ENTER Target risk for carcinogens, TR (unitless)	ENTER Target hazard quotient for noncarcinogens, THQ (unitless)	ENTER Averaging time for carcinogens, AT _C (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	ENTER Exposure duration, ED (yrs)	ENTER Exposure frequency, EF (days/yr)
1.0E-06	1	70	30	30	350
	llate risk-based concentration.				

Attachment C Group 3 PCE Johnson and Ettinger Evaluation Pfizer, Carolina Facility, Puerto Rico

GW-SCREEN CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box) Version 3.1; 02/04 YES Χ Reset to OR Defaults CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below) YES **ENTER ENTER** Initial Chemical groundwater CAS No. conc., (numbers only, C_{W} no dashes) (ua/L) Chemical Attenuation Factor 127184 Tetrachloroethylene 1.03E-05 **ENTER ENTER ENTER ENTER** MORE **↓** Depth **ENTER** below grade Average to bottom Depth soil/ Average vapor SCS of enclosed below grade groundwater flow rate into bldg. space floor, to water table, soil type temperature, (Leave blank to calculate) directly above T_S Q_{soil} (°C) (cm) water table (L/m) (cm)

SC

MORE **↓** 15

636.739265

Vadose zone SCS soil type (used to estimate soil vapor	OR	User-defined vandose zone soil vapor permeability, k _v	ENTER Vadose zone SCS soil type Lookup Soil	ENTER Vadose zone soil dry bulk density, $\rho_b^{\ V}$	ENTER Vadose zone soil total porosity, n ^V	ENTER Vadose zone soil water-filled porosity, θ_w^V
permeability)		(cm ²)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)

25

ENTER Target risk for carcinogens, TR (unitless)	ENTER Target hazard quotient for noncarcinogens, THQ (unitless)	ENTER Averaging time for carcinogens, AT _C (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	ENTER Exposure duration, ED (yrs)	ENTER Exposure frequency, EF (days/yr)
1.0E-06	1	70	30	30	350
Used to calcul	late risk-based concentration.	,,,		00	000

GW-SCREEN Version 3.1; 02/04 CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES

X OR

Reset to Defaults

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES

ENTER ENTER
Initial
Chemical groundwater
CAS No. conc.,
(numbers only, no dashes) (µg/L) Chemical

127184 Tetrachloroethylene 1.06E-05

Attenuation Factor

MORE **↓**

	•		•	
ENTER Depth	ENTER	ENTER	ENTER	
below grade			Average	ENTER
to bottom	Depth		soil/	Average vapor
of enclosed	below grade	SCS	groundwater	flow rate into bldg.
space floor,	to water table,	soil type	temperature,	(Leave blank to calculate)
L_F	L _{WT}	directly above	T _S	Q_{soil}
(cm)	(cm)	water table	(°C)	(L/m)
15	688.7972	SC	25	5

MORE **↓**

ENTER Vadose zone SCS soil type (used to estimate	OR	ENTER User-defined vandose zone soil vapor permeability,	ENTER Vadose zone SCS soil type	ENTER Vadose zone soil dry bulk density,	ENTER Vadose zone soil total porosity,	ENTER Vadose zone soil water-filled porosity,
soil vapor permeability)		k _v (cm²)	Lookup Soil Parameters	ρ _b ^V (g/cm ³)	n ^V (unitless)	$\theta_{\rm w}^{\rm V}$ (cm ³ /cm ³)
SC			SC	1.38	0.481	0.216

ENTER Target risk for carcinogens, TR (unitless)	ENTER Target hazard quotient for noncarcinogens, THQ (unitless)	ENTER Averaging time for carcinogens, AT _C (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	ENTER Exposure duration, ED (yrs)	Exposure frequency, EF (days/yr)
1.0E-06	1 1	70	30	30	350

GW-SCREEN
Version 3.1; 02/04

Reset to
Defaults

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES X
OR

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES

ENTER ENTER
Initial
Chemical groundwater
CAS No. conc.,
(numbers only,
no dashes) (µg/L) Chemical

127184 Tetrachloroethylene 1.04E-05

ENTER ENTER ENTER ENTER

Attenuation Factor

MORE **↓**

ENTER Depth	ENTER	ENTER	ENTER	
below grade to bottom of enclosed space floor,	Depth below grade to water table,	SCS soil type	Average soil/ groundwater temperature,	ENTER Average vapor flow rate into bldg. (Leave blank to calculate)
L _F (cm)	L _{WT} (cm)	directly above water table	T _s (°C)	Q _{soil} (L/m)
15	547.7256	SC	25	5

MORE **↓**

ENTER Vadose zone SCS soil type	0.0	ENTER User-defined vandose zone soil vapor	ENTER Vadose zone SCS	ENTER Vadose zone soil dry	ENTER Vadose zone soil total	ENTER Vadose zone soil water-filled
(used to estimate soil vapor permeability)	OR	permeability, k _v (cm ²)	soil type Lookup Soil Parameters	bulk density, ρ_b^V (g/cm ³)	porosity, n ^V (unitless)	porosity, $\theta_w^{\ V}$ (cm ³ /cm ³)
SC			SC	1.63	0.385	0.197

Target Target has risk for quotient carcinogens, noncarcinogens, TR THQ (unitless) (unitless	for time for gens, carcinogens,	Averaging time for noncarcinogens, AT _{NC} (yrs)	Exposure duration, ED (yrs)	Exposure frequency, EF (days/yr)
1.0E-06 1	70	30	30	350

GW-SCREEN Version 3.1; 02/04 Reset to

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES Χ OR

Defaults

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES **ENTER ENTER** Initial Chemical groundwater CAS No. conc., C_W (μg/L) (numbers only, no dashes) Chemical

127184 Tetrachloroethylene 1.06E-05

Attenuation Factor

MORE **↓**

ENTER Depth	ENTER	ENTER	ENTER	
below grade			Average	ENTER
to bottom	Depth		soil/	Average vapor
of enclosed	below grade	SCS	groundwater	flow rate into bldg.
space floor,	to water table,	soil type	temperature,	(Leave blank to calculate)
L_F	L_{WT}	directly above	T_S	Q_{soil}
(cm)	(cm)	water table	(°C)	(L/m)
15	385.7244	SC	25	5

MORE **↓**

ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²)	ENTER Vadose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, $\rho_b^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^V (cm³/cm³)
SC			SC	1.63	0.385	0.197

MORE

ENTER Target risk for carcinogens, TR (unitless)	ENTER Target hazard quotient for noncarcinogens, THQ (unitless)	ENTER Averaging time for carcinogens, AT _C (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	ENTER Exposure duration, ED (yrs)	ENTER Exposure frequency, EF (days/yr)
1.0E-06 Used to calcul groundwater of	ate risk-based	70	30	30	350

10382746B

Attachment C Group 7 PCE Johnson and Ettinger Evaluation Pfizer, Carolina Facility, Puerto Rico

GW-SCREEN CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box) Version 3.1; 02/04 YES Χ Reset to OR Defaults CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below) YES **ENTER ENTER** Initial Chemical groundwater CAS No. conc., (numbers only, C_{W} no dashes) (ua/L) Chemical Attenuation Factor 127184 Tetrachloroethylene 1.03E-05 **ENTER ENTER ENTER ENTER** MORE **↓** Depth **ENTER** below grade Average to bottom Depth soil/ Average vapor SCS of enclosed below grade groundwater flow rate into bldg. space floor, to water table, soil type temperature, (Leave blank to calculate) directly above T_S Q_{soil} water table (°C) (cm) (L/m) (cm) 25 15 625.1448 SC

MORE **↓**

ENTER Vadose zone SCS Soil type (used to estimate Soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²)	ENTER Vadose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, ρ_b^V (g/cm³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^V (cm³/cm³)
permeability)		(CIII)		(g/CIII)	(unitiess)	(CIII /CIII)
SC			SC	1.63	0.385	0.197

ENTER Target risk for carcinogens, TR (unitless)	ENTER Target hazard quotient for noncarcinogens, THQ (unitless)	ENTER Averaging time for carcinogens, AT _C (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	ENTER Exposure duration, ED (yrs)	EXPOSURE frequency, EF (days/yr)
1.0E-06	1 1	70	30	30	350

GW-SCREEN Version 3.1; 02/04 Reset to Defaults

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES X
OR

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES

ENTER
ENTER
Initial
Chemical groundwater
CAS No. conc.,
(numbers only,
no dashes)
(µg/L)
Chemical

127184 Tetrachloroethylene 1.04E-05

ENTER ENTER ENTER ENTER

Attenuation Factor

MORE **↓**

ENTER	ENTER	ENTER	ENTER	
Depth below grade to bottom of enclosed	Depth below grade	SCS	Average soil/ groundwater	ENTER Average vapor flow rate into bldg.
space floor, L _F	to water table, L _{WT}	soil type directly above	temperature, T _S	(Leave blank to calculate) Q _{soil}
(cm)	(cm)	water table	(°C)	(L/m)
15	549.7068	SC	25	5

MORE **↓**

Vadose zone SCS soil type (used to estimate soil vapor	OR	User-defined vandose zone soil vapor permeability, k _v (cm ²)	ENTER Vadose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, ρ _b (α(cm ³)	ENTER Vadose zone soil total porosity, n (variation)	ENTER Vadose zone soil water-filled porosity, θ_w^V (cm^3/cm^3)
permeability)		(cm ⁻)		(g/cm ³)	(unitless)	(cm ^o /cm ^o)

	Averaging time for carcinogens, AT _C (yrs)	Target hazard quotient for noncarcinogens, THQ (unitless)	Target risk for carcinogens, TR (unitless)
30 30 350	70	1	1.0E-06
30 30	70	1 late risk-based	

GW-SCREEN Version 3.1; 02/04 Reset to Defaults CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES X
OR

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

 $\begin{array}{c|cccc} & & & & & & \\ \hline \textbf{ENTER} & & & & & \\ & & & & & \\ \hline \textbf{ENTER} & & & & \\ & & & & & \\ \hline \textbf{Initial} & & & \\ \hline \textbf{Chemical} & & & & \\ \hline \textbf{groundwater} & & & \\ \hline \textbf{CAS No.} & & & & \\ \hline \textbf{conc.,} & & & \\ \hline \textbf{(numbers only,} & & & \\ \hline \textbf{no dashes)} & & & & \\ \hline \textbf{(ug/L)} & & & & \\ \hline \textbf{Chemical} & & & \\ \hline \end{array}$

79016 Trichloroethylene 8.86E-06 **ENTER ENTER ENTER ENTER** Depth **ENTER** below grade Average to bottom Depth soil/ Average vapor SCS flow rate into bldg. of enclosed below grade groundwater (Leave blank to calculate)

Attenuation Factor

Q_{soil}

(L/m)

space floor, to water table, soil type temperature, L_F L_{WT} directly above T_S (cm) (cm) water table (°C)

MORE **↓**

MORE

Ψ

ENTER ENTER Vadose zone User-defined **ENTER ENTER ENTER ENTER** SCS vandose zone Vadose zone Vadose zone Vadose zone Vadose zone soil type soil vapor SCS soil dry soil total soil water-filled (used to estimate OR permeability, soil type bulk density, porosity, porosity, soil vapor $\rho_b^{\ V}$ n۷ θ_w^V Lookup Soil Parameters (cm²) (cm³/cm³) permeability) (g/cm3) (unitless) SC 0.385 0.197 SC 1.63

MORE **↓**

ENTER Target risk for carcinogens, TR (unitless)	ENTER Target hazard quotient for noncarcinogens, THQ (unitless)	ENTER Averaging time for carcinogens, AT _C (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	ENTER Exposure duration, ED (yrs)	ENTER Exposure frequency, EF (days/yr)
1.0E-06	1	70	30	30	350

Used to calculate risk-based groundwater concentration.

GW-SCREEN

Group 2 TCE Johnson and Ettinger Evaluation CALCULATE RISK-BASED GROUND Price可以 TCE (TOP) TOP (TOP) TO THE TOP (TOP) TO THE

Version 3.1; 02/04

Reset to Defaults

YES OR

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES

ENTER ENTER Initial Chemical groundwater CAS No. conc., (numbers only, C_W no dashes) (µg/L)

Chemical Attenuation Factor 79016 Trichloroethylene 8.56E-06

MORE Ψ

ENTER	ENTER	ENTER	ENTER	
Depth below grade			Average	ENTER
to bottom	Depth		soil/	Average vapor
of enclosed	below grade	SCS	groundwater	flow rate into bldg.
space floor,	to water table,	soil type	temperature,	(Leave blank to calculate)
L_F	L_{WT}	directly above	T _S	Q_{soil}
(cm)	(cm)	water table	(°C)	(L/m)
15	556.96485	SC	25	5

MORE T

ENTER		ENTER				
Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vandose zone soil vapor permeability, k _v (cm ²)	Vadose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, Pb (g/cm³)	ENTER Vadose zone soil total porosity, n (unitless)	ENTER Vadose zone soil water-filled porosity, θw (cm³/cm³)
			SC			

MORE

ENTER Target risk for carcinogens, TR (unitless)	ENTER Target hazard quotient for noncarcinogens, THQ (unitless)	ENTER Averaging time for carcinogens, AT _C (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	ENTER Exposure duration, ED (yrs)	ENTER Exposure frequency, EF (days/yr)
1.0E-06 Used to calcula groundwater c		70	30	30	350

GW-SCREEN Version 3.1; 02/04 Reset to Defaults

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES Х OR

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES **ENTER ENTER** Initial Chemical groundwater CAS No. conc., C_W (μg/L) (numbers only, no dashes) Chemical

79016 Trichloroethylene 8.50E-06

Attenuation Factor

MORE **↓**

ENTER Depth below grade	ENTER	ENTER	ENTER Average	ENTER
to bottom of enclosed space floor,	Depth below grade to water table,	SCS soil type	soil/ groundwater temperature,	Average vapor flow rate into bldg. (Leave blank to calculate)
L _F (cm)	L _{WT} (cm)	directly above water table	T _S (°C)	Q _{soil} (L/m)
15	636.739265	SC	25	5

MORE

SCS soil type (used to estimate soil vapor	OR	User-defined vandose zone soil vapor permeability, k _v	Vadose zone SCS soil type	Vadose zone soil dry bulk density,	ENTER Vadose zone soil total porosity, n ^V	Vadose zone soil water-filled porosity,
permeability)		(cm ²)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)

MORE

ENTER Target risk for carcinogens, TR (unitless)	ENTER Target hazard quotient for noncarcinogens, THQ (unitless)	ENTER Averaging time for carcinogens, AT _C (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	ENTER Exposure duration, ED (yrs)	EXPOSURE frequency, EF (days/yr)
1.0E-06	1 1	70	30	30	350

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES X
OR

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

 ENTER
 ENTER Initial

 Chemical CAS No.
 groundwater conc.,

 (numbers only, no dashes)
 C_W (µg/L)
 Chemical

79016 Trichloroethylene 8.47E-06 **ENTER ENTER ENTER ENTER** Depth **ENTER** below grade Average to bottom Depth soil/ Average vapor flow rate into bldg.

SCS of enclosed below grade groundwater space floor, to water table, soil type temperature, L_{WT} directly above T_S (°C) (cm) water table (cm) 25 15 688.7972 SC

Q_{soil} (L/m)

(Leave blank to calculate)

Attenuation Factor

MORE **↓**

MORE **↓**

ENTER Vadose zone SCS Soil type (used to estimate Soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²)	ENTER Vadose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, ρ_b^V (g/cm³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w (cm³/cm³)
permeability)		(CIII)		(g/CIII)	(unitiess)	(CIII /CIII)
SC			SC	1.63	0.385	0.197

MORE **↓**

ENTER Target risk for carcinogens, TR (unitless)	ENTER Target hazard quotient for noncarcinogens, THQ (unitless)	ENTER Averaging time for carcinogens, AT _C (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	ENTER Exposure duration, ED (yrs)	ENTER Exposure frequency, EF (days/yr)
1.0E-06	1	70	30	30	350

Used to calculate risk-based groundwater concentration.

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES X
OR

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES

ENTER

ENTER

Initial

Chemical groundwater

CAS No. conc.,

(numbers only,

no dashes)

(µg/L)

Chemical

Chemical

Chemical

Conc.,

Chemical

Chemical

Chemical

Chemical

 no dashes)
 (μg/L)
 Chemical
 Attenuation Factor

 79016
 Trichloroethylene
 8.57E-06

 ENTER Depth
 ENTER ENTER ENTER

MORE **↓**

ENTER Depth below grade to bottom of enclosed space floor, L _F (cm)	Depth below grade to water table, L _{WT} (cm)	SCS soil type directly above water table	ENTER Average soil/ groundwater temperature, T _S (°C)	ENTER Average vapor flow rate into bldg. (Leave blank to calculate) Q _{soil} (L/m)
15	547.7256	SC	25	5

MORE **↓**

ENTER Vadose zone SCS soil type	0.0	ENTER User-defined vandose zone soil vapor	ENTER Vadose zone SCS	ENTER Vadose zone soil dry	ENTER Vadose zone soil total	ENTER Vadose zone soil water-filled
(used to estimate soil vapor permeability)	OR	permeability, k _v (cm ²)	soil type Lookup Soil Parameters	bulk density, ρ_b^V (g/cm ³)	porosity, n ^V (unitless)	porosity, $\theta_w^{\ V}$ (cm ³ /cm ³)
SC			SC	1.63	0.385	0.197

ENTER Target risk for carcinogens, TR (unitless)	ENTER Target hazard quotient for noncarcinogens, THQ (unitless)	ENTER Averaging time for carcinogens, AT _C (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	ENTER Exposure duration, ED (yrs)	ENTER Exposure frequency, EF (days/yr)
1.0E-06	1	70	30	30	350
	late risk-based concentration.				

GW-SCREEN Version 3.1; 02/04 CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES

X OR

Reset to Defaults

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES

ENTER
Initial
groundwater

 Chemical CAS No.
 groundwater conc., (numbers only, no dashes)
 C_W (μg/L)
 Chemical Attenuation Factor

 79016
 Trichloroethylene
 8.68E-06

MORE **↓** **ENTER**

79016		Trich	loroethylene	8.68E-06
ENTER Depth	ENTER	ENTER	ENTER	
below grade			Average	ENTER
to bottom	Depth		soil/	Average vapor
of enclosed	below grade	SCS	groundwater	flow rate into bldg.
space floor,	to water table,	soil type	temperature,	(Leave blank to calculate)
L_F	L _{WT}	directly above	T _S	Q_{soil}
(cm)	(cm)	water table	(°C)	(L/m)
15	385.7244	SC	25	5

MORE **↓**

ENTER		ENTER				
Vadose zone		User-defined	ENTER	ENTER	ENTER	ENTER
SCS		vandose zone	Vadose zone	Vadose zone	Vadose zone	Vadose zone
soil type		soil vapor	SCS	soil dry	soil total	soil water-filled
used to estimate	OR	permeability,	soil type	bulk density,	porosity,	porosity,
soil vapor		k _v	Lookup Soil	ρ_b^{V}	n ^V	θ_{w}^{V}
permeability)		(cm ²)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)
SC			SC	1.63	0.385	0.197

MORE **↓**

ENTER Target risk for carcinogens, TR (unitless)	ENTER Target hazard quotient for noncarcinogens, THQ (unitless)	ENTER Averaging time for carcinogens, AT _C (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	ENTER Exposure duration, ED (yrs)	EXPOSURE frequency, EF (days/yr)
1.0E-06	1	70	30	30	350

groundwater concentration.

GW-SCREEN CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box) Version 3.1; 02/04 YES Χ Reset to OR Defaults CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below) YES **ENTER** ENTER Initial Chemical groundwater CAS No. conc., (numbers only, C_{W} no dashes) (ua/L) Chemical Attenuation Factor 79016 Trichloroethylene 8.68E-06 **ENTER ENTER ENTER ENTER** MORE **↓** Depth **ENTER** below grade Average to bottom Depth soil/ Average vapor below grade SCS flow rate into bldg. of enclosed groundwater space floor, to water table, soil type temperature, (Leave blank to calculate) L_{WT} directly above T_S Q_{soil} (cm) water table (°C) (L/m) (cm)

SC

MORE **↓**

ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability,	ENTER Vadose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, ρ_b^V (g/cm³)	ENTER Vadose zone soil total porosity, n (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^V (cm³/cm³)
SC		SC		1.43	0.459	0.215

25

Enter either a vadose zone SCS soil type OR a user-defined permeability.

625.1448

15

ENTER Exposure frequency, EF (days/yr)	ENTER Exposure duration, ED (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	ENTER Averaging time for carcinogens, AT _C (yrs)	ENTER Target hazard quotient for noncarcinogens, THQ (unitless)	ENTER Target risk for carcinogens, TR (unitless)
350	30	30	70	1	1.0E-06
		¥ /	· · · · · · · · · · · · · · · · · · ·	1 late risk-based	1.0E-06

GW-SCREEN Version 3.1; 02/04 CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES

Х OR

Reset to Defaults

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES **ENTER ENTER** Initial Chemical groundwater CAS No. conc., C_W (μg/L) (numbers only, no dashes) Chemical

79016 Trichloroethylene 8.56E-06

Attenuation Factor

MORE **↓**

ENTER Depth	ENTER	ENTER	ENTER	
below grade			Average	ENTER
to bottom	Depth		soil/	Average vapor
of enclosed	below grade	SCS	groundwater	flow rate into bldg.
space floor,	to water table,	soil type	temperature,	(Leave blank to calculate)
L _F	L_{WT}	directly above	T _S	Q_{soil}
(cm)	(cm)	water table	(°C)	(L/m)
15	549.7068	SC	25	5

MORE

ENTER		ENTER				
Vadose zone		User-defined	ENTER	ENTER	ENTER	ENTER
SCS		vandose zone	Vadose zone	Vadose zone	Vadose zone	Vadose zone
soil type		soil vapor	SCS	soil dry	soil total	soil water-filled
used to estimate	OR	permeability,	soil type	bulk density,	porosity,	porosity,
soil vapor		k _v	Lookup Soil	ρ_b^{V}	n ^V	θ_{w}^{V}
permeability)		(cm ²)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)
SC			SC	1.63	0.385	0.197

MORE

ENTER Target risk for carcinogens, TR (unitless)	ENTER Target hazard quotient for noncarcinogens, THQ (unitless)	ENTER Averaging time for carcinogens, AT _C (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	ENTER Exposure duration, ED (yrs)	ENTER Exposure frequency, EF (days/yr)
1.0E-06	1	70	30	30	350
	ate risk-based concentration.				

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES Χ OR

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES **ENTER ENTER** Initial Chemical groundwater CAS No. conc., C_W (μg/L) (numbers only, no dashes) Chemical

75014 Vinyl chloride (chloroethene) 1.61E-05

Attenuation Factor

MORE **↓**

ENTER Depth	ENTER	ENTER	ENTER	ENTER
below grade to bottom	Depth		Average soil/	ENTER Average vapor
of enclosed	below grade	SCS	groundwater	flow rate into bldg.
space floor,	to water table,	soil type	temperature,	(Leave blank to calculate)
L_F	L _{WT}	directly above	T _S	Q_{soil}
(cm)	(cm)	water table	(°C)	(L/m)
				<u> </u>
15	556.96485	SC	25	5

MORE **↓**

ENTER Vadose zone SCS soil type	0.0	ENTER User-defined vandose zone soil vapor	ENTER Vadose zone SCS	ENTER Vadose zone soil dry	ENTER Vadose zone soil total	ENTER Vadose zone soil water-filled
(used to estimate soil vapor permeability)	OR	permeability, k _v (cm ²)	soil type Lookup Soil Parameters	bulk density, ρ_b^V (g/cm ³)	porosity, n ^V (unitless)	porosity, $\theta_w^{\ V}$ (cm ³ /cm ³)
SC			SC	1.63	0.385	0.197

MORE

ENTER Target risk for carcinogens, TR (unitless)	ENTER Target hazard quotient for noncarcinogens, THQ (unitless)	ENTER Averaging time for carcinogens, AT _C (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	ENTER Exposure duration, ED (yrs)	Exposure frequency, EF (days/yr)
1.0E-06	1	70	30	30	350

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES X
OR

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

 ENTER
 ENTER Initial groundwater CAS No. (numbers only, no dashes)
 C_W (μg/L)
 Chemical Chemical groundwater Conc., (numbers only, no dashes)
 C_W (μg/L)
 Chemical Chemical

75014 Vinyl chloride (chloroethene) 1.60E-05 **ENTER ENTER ENTER ENTER** Depth **ENTER** below grade Average to bottom Depth soil/ Average vapor flow rate into bldg.

SCS of enclosed below grade groundwater space floor, to water table, soil type temperature, L_{WT} directly above T_S (°C) (cm) water table (cm) 25 15 636.739265 SC

(L/m) 5

(Leave blank to calculate)

Q_{soil}

Attenuation Factor

MORE **↓**

MORE **↓**

ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²)	ENTER Vadose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, $\rho_b^{\ V}$ (g/cm³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^V (cm³/cm³)
SC			SC	1.63	0.385	0.197

MORE **↓**

ENTER Target risk for carcinogens, TR (unitless)	ENTER Target hazard quotient for noncarcinogens, THQ (unitless)	ENTER Averaging time for carcinogens, AT _C (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	ENTER Exposure duration, ED (yrs)	ENTER Exposure frequency, EF (days/yr)
1.0E-06	1	70	30	30	350

Used to calculate risk-based groundwater concentration.

GW-SCREEN
Version 3.1; 02/04

Reset to
Defaults

CALCULATE RISK

CALCULATE INCI
(enter "X" in "YES

ENTER

Chemical
CAS No.
(numbers only,

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES X
OR

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES

ER ENTER
Initial
ical groundwater
No. conc.,

 (numbers only, no dashes)
 C_W (μg/L)
 Chemical
 Attenuation Factor

 75014
 Vinyl chloride (chloroethene)
 1.59E-05

MORE **↓**

		•		
ENTER Depth	ENTER	ENTER	ENTER	
below grade			Average	ENTER
to bottom	Depth		soil/	Average vapor
of enclosed	below grade	SCS	groundwater	flow rate into bldg.
space floor,	to water table,	soil type	temperature,	(Leave blank to calculate)
L_F	L _{WT}	directly above	T _S	Q_{soil}
(cm)	(cm)	water table	(°C)	(L/m)
45	000 7070	00	05	
15	688.7972	SC	25	5

MORE **↓**

SCS vandose zone Vadose zone V	ENTER		ENTER				
soil vapor k_v Lookup Soil ρ_b^V n^V θ_w	SCS soil type		vandose zone soil vapor	Vadose zone SCS	Vadose zone soil dry	Vadose zone soil total	ENTER Vadose zone soil water-filled
permeability) (cm ⁻) (g/cm ⁻) (unitless) (cm ⁻ /c	soil vapor	OR	k _v	Lookup Soil	${\rho_b}^{V}$	n ^V	porosity, $\theta_w^{\ V}$
SC SC 1.63 0.385 0.19	7,		(cm²)		(g/cm°)	(3.7.2.7)	(cm ^{-/} cm ^{-/})

ENTER Target risk for carcinogens, TR (unitless)	ENTER Target hazard quotient for noncarcinogens, THQ (unitless)	ENTER Averaging time for carcinogens, AT _C (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	ENTER Exposure duration, ED (yrs)	ENTER Exposure frequency, EF (days/yr)
1.0E-06	1	70	30	30	350
Used to calculary					

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES X
OR

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

75014 Vinyl chloride (chloroethene) 1.61E-05

ENTER ENTER ENTER ENTER
Depth
below grade Average ENTER

MORE **↓**

below grade Average to bottom Depth soil/ SCS of enclosed below grade groundwater space floor, to water table, soil type temperature, L_{WT} directly above T_S water table (°C) (cm) (cm) 25 15 547.7256 SC

Q_{soil} (L/m)

Average vapor

flow rate into bldg.

(Leave blank to calculate)

Attenuation Factor

MORE **↓**

SCS soil type (used to estimate soil vapor	OR	User-defined vandose zone soil vapor permeability, k _v	Vadose zone SCS soil type	Vadose zone soil dry bulk density,	ENTER Vadose zone soil total porosity, n ^V	Vadose zone soil water-filled porosity,
permeability)		(cm ²)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)

MORE **↓**

ENTER Target risk for carcinogens, TR (unitless)	ENTER Target hazard quotient for noncarcinogens, THQ (unitless)	ENTER Averaging time for carcinogens, AT _C (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	ENTER Exposure duration, ED (yrs)	EXTER Exposure frequency, EF (days/yr)
1.0E-06	1	70	30	30	350

Used to calculate risk-based groundwater concentration.

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES X
OR

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES

ENTER

ENTER
Initial
Chemical groundwater
CAS No. conc.,
(numbers only, no dashes)

(µg/L)

Chemical

Vinyl chloride (chloroethene)

MORE **↓**

75014		Vinyl chlorid	de (chloroethene)	1.64E-05
ENTER Depth	ENTER	ENTER	ENTER	
below grade			Average	ENTER
to bottom	Depth		soil/	Average vapor
of enclosed	below grade	SCS	groundwater	flow rate into bldg.
space floor,	to water table,	soil type	temperature,	(Leave blank to calculate)
L_F	L _{WT}	directly above	T _S	Q_{soil}
(cm)	(cm)	water table	(°C)	(L/m)
15	385.7244	SC	25	5

MORE **↓**

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ENTER		ENTER				
soil vapor k_v Lookup Soil ρ_b^V n^V	SCS soil type		vandose zone soil vapor	Vadose zone SCS	Vadose zone soil dry	Vadose zone soil total	ENTER Vadose zone soil water-filled
permeability) (g/cm²) (unitless)	soil vapor	OR	k _v	Lookup Soil	ρ_b^{V}	n ^V	porosity, θ_w^{V}
SC SC 1.63 0.385			(cm ⁻)		(g/cm°)	(3.7.2.7)	(cm ³ /cm ³)

Attenuation Factor

ENTER Target risk for carcinogens, TR (unitless)	ENTER Target hazard quotient for noncarcinogens, THQ (unitless)	ENTER Averaging time for carcinogens, AT _C (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	ENTER Exposure duration, ED (yrs)	ENTER Exposure frequency, EF (days/yr)
1.0E-06	1 1	70	30	30	350

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES X
OR

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES **ENTER ENTER** Initial Chemical groundwater CAS No. conc., C_W (μg/L) (numbers only, no dashes) Chemical Attenuation Factor 75014 Vinyl chloride (chloroethene) 1.61E-05

MORE **↓**

ENTER Depth	ENTER	ENTER	ENTER	
below grade			Average	ENTER
to bottom	Depth		soil/	Average vapor
of enclosed	below grade	SCS	groundwater	flow rate into bldg.
space floor,	to water table,	soil type	temperature,	(Leave blank to calculate)
L _F	L _{WT}	directly above	T _S	Q_{soil}
(cm)	(cm)	water table	(°C)	(L/m)
15	549.7068	SC	25	5

MORE **↓**

soil vapor k _v Lookup Soil Parameters Lookup Soil Parameters

ENTER Target risk for carcinogens, TR (unitless)	ENTER Target hazard quotient for noncarcinogens, THQ (unitless)	ENTER Averaging time for carcinogens, AT _C (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	ENTER Exposure duration, ED (yrs)	ENTER Exposure frequency, EF (days/yr)
1.0E-06	1 1	70	30	30	350

1		S	Soil Properties I	Lookup Table		Bulk Density					
SCS Soil Type	K _s (cm/h)	α_1 (1/cm)	N (unitless)	M (unitless)	n (cm³/cm³)	$\theta_r (cm^3/cm^3)$	Mean Grain Diameter (cm)	(g/cm ³)	θ _w (cm³/cm³) SCS Soil Name		
С	0.61	0.01496	1.253	0.2019	0.459	0.098	0.0092	1.43	0.215 Clay		
CL	0.34	0.01581	1.416	0.2938	0.442	0.079	0.016	1.48	0.168 Clay Loam		
L	0.50	0.01112	1.472	0.3207	0.399	0.061	0.020	1.59	0.148 Loam		
LS	4.38	0.03475	1.746	0.4273	0.390	0.049	0.040	1.62	0.076 Loamy Sand		
S	26.78	0.03524	3.177	0.6852	0.375	0.053	0.044	1.66	0.054 Sand		
SC	0.47	0.03342	1.208	0.1722	0.385	0.117	0.025	1.63	0.197 Sandy Clay		
SCL	0.55	0.02109	1.330	0.2481	0.384	0.063	0.029	1.63	0.146 Sandy Clay Loam		
SI	1.82	0.00658	1.679	0.4044	0.489	0.050	0.0046	1.35	0.167 Silt		
SIC	0.40	0.01622	1.321	0.2430	0.481	0.111	0.0039	1.38	0.216 Silty Clay		
SICL	0.46	0.00839	1.521	0.3425	0.482	0.090	0.0056	1.37	0.198 Silty Clay Loam		
SIL	0.76	0.00506	1.663	0.3987	0.439	0.065	0.011	1.49	0.180 Silt Loam		
SL	1.60	0.02667	1.449	0.3099	0.387	0.039	0.030	1.62	0.103 Sandy Loam		

		Organic carbon			Pure component		Henry's law constant	Henry's law constant	Normal		Enthalpy of vaporization at	Unit			
		partition coefficient,	Diffusivity in air,	Diffusivity in water,	water solubility,	Henry's law constant	at reference temperature,	reference temperature,	boiling point,	Critical temperature,	the normal boiling point,	risk factor,	Reference conc.,	URF	RfC
		K _{oc}	Da	D_w	S	H'	Н	T _R	T _B	T _C	$\Delta H_{v,b}$	URF	RfC	extrapolated	extrapolate
CAS No.	Chemical	(cm ³ /g)	(cm ² /s)	(cm ² /s)	(mg/L)	(unitless)	(atm-m ³ /mol)	(°C)	(°K)	(°K)	(cal/mol)	(μg/m ³) ⁻¹	(mg/m ³)	(X)	(X)
75014 Viny	/l chloride (chloroethene)	2.20E+01	1.10E-01	1.20E-05	8.80E+03	1.10E+00	2.80E-02	25	259.25	432.00	5,250	8.8E-06	1.0E-01		
79016 Tric	hloroethylene	6.10E+01	6.90E-02	1.00E-05	1.30E+03	4.00E-01	9.90E-02	25	360.36	544.20	7,505	1.1E-04	4.0E-02	X	
127184 Tetr	achloroethylene	9.50E+01	5.00E-02	9.50E-06	2.10E+02	7.20E-01	1.80E-02	25	394.40	620.20	8,288	5.9E-06	6.0E-01		